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ABSTRACT

Some simple transformation properties of the diffusion
equation that has been classically used to describe turbulent
transport in the atmosphere are briefly examined. The essen-
tial tensorial nature of the eddy diffusivity is emphasized,
and it is concluded that the standard form frequently adopted
for the diffusion equation in the meteorological literature
cannot be generally valid.
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I. INTRODUCTION

We consider the equation that is frequently quoted in the meteorologi-
cal literature as describing the turbulent diffusion of a conservative
scalar property in three dimensions. For present purposes the density of
the fluid medium will be supposed to be constant, and the standard general
form of the equation taken to be

TF+US j +~ I ýz"U Kl rX) + 5- (K (- K3 P)(l)

relative to a fixed system of rectangular Cartesian coordinates Oxyz.
Here C "-- C (xyzt) is a suitably defined mean concentration; u, v, w
are the mean velocity components of the fluid motion; KI, K2, 17 are the
so-called eddy diffusion coefficients, which are assumed to be functions
of position. Unfortunately the precise nature of the quantities KI, K2,
and K3 (e.g., whether they are scalar functions of position or components
__• f,,.rn-fnn, •ACtA is rarely discussed in the meteorological con-
texts. Since this quection is vital to the interpretation ox rnu equakiou
4t is briefly examined in this manuscript. it is shinm that, even under
the customary assumptions, Equation (1) cannot be a generally valid form
of diffusion equation.

•I, A GENERAL TRA.NSrODTION

More fundamentally, the right side of Equation (1) is the negative of

div F • •x/bx ± + bFFz/ where E - (F,, Fy, F2 ) is the turbulent

flux vector for the scalar pr'operty considered. Equation (I) then results
from the hypothesis that the components of F relative to the axes Oxyz are
related in a simple homogeneous linear fashion to the respectiv• components

of the concentration gradient vector C/ur - C/bx, 'C/by, "CIZ)"

Let the Greek symbols a, P, Y, etc. stand for any of x, y, or z, and let
us define for the chosen axes Oxyr an ordered array of nine quantitics
Ka by the matrix equation

I 1 xx x KXz Y' (l 0 D
K KV y K 0 K3o4 YK yy YZ 0 0 2 K (2)
Kzx Yzy Kzz / 0013 )

Yu-c convenience we shall also use the Einstein auimation ctnvention,
according to which, in any term containing a repeated Greek suffix, it
is understood that the suffix is given all possible values x, y. z and
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the terms so obtained are t-hen added, Then at any chose,, point of the
medium Equation (1) is exactly equivalent,tq the following rel.ation
between the components of F and those of "/a,:

Fa. =- ! r /6 r• (3)

We now consider a second arbitrary set of rectangular axes Ox'y'z', and
let tof denote the cosine of the angle between the axes Oc and Op', so
that t t Then the components of the vector F relative to the new
axes will be 0ien by

FY, = Fa t ay, (4)

Sinilarly, the components of the gradient vector aC/ar for the axes
Oxyz will be related to those for the axes Ox'y'z' y

a -r . 7Clbr, t 8 ,• (5)

From Equations (3), (4), and (5) it follows that

K0 o Z• /r6, t1 -Y tP8, (6)

Equation (6) provi:Jes the rule foS Gelating the components of the flux
vector F and the gradient vector I/r in the new axes Ox'y'z'. It may
equivalently be written

S- - , /Cr 6 , (7)

where
Ny,6, = - K. t y, tP8, (8)

Equation (8), however, defines the known transformation law for a second-
order Cartesian tensor. It thus establishes the fact that the set of
quantities K.0 in Equation (2) constitut:e the components of a second-
order 1ýensor. This is a direct consequence of the vectorial nature of
F and •C/ r. The tensor K is, of course, in genera]. a function of posi-
tion. since the relation between F and C/br will be defined at every

point of the medium. We see from Equation-T7) that in the arbitrary
axes Ox'y'z' the comp nents of F are general homogeneous linear functions
of the components of C/ r.This relationship is exactly analogous to
that encountered in cons-diering molecular heat condu'2tion in an anisotropie
medium. Whether such a linearity hypothesis is actually Justified for the



turbulent flux of a scalar property can, of course, only be decided on
the basis of experiment. For any physical meaning to be attached to the
tensor K y,' (or Ko0 ), it is evident that it must be a property of the
fluid motion, i.e., independent of the distribution of the diffusing
scalar property. We may call K•B the eddy diffusivity tensor.

'Pt •eay oe notý\ed tWAt the'requirement for such a tensor quantity is
actually suggested by an obvious extension of the Prandtl mixing-length
concept to three dimensions. Thus, if we suppose that the turbulent
fluctuation of concentration C' from the mean value C is given by

C' = - 1. -C/ýr - I• 6C/r P

so that I = (xI, 1 y, Wz) is the mixing-length vector, then if VC, denotes
a component of the turbulent velocity fluctuation, and an overbar denotes
* mlean value,

F = V1 C' I ' r
;o - 0, -- -

=--K cP ar• where K 0 VM I0

and K U• is clearly a secnond-order teneor.

Relative to the axes Ox'y'z' the right side of Equation (1), which
represents - div Fj is replaced by the nine-term sum represented under
the surmation convention by

(r , Br ,
bl LCtJ3



III. SOME SPECIAL FORMS

The special diagonal form of the tensor Kp in Equation (2) relative
to the axes Oxyz implies that at the chosen point of the medium the dif-
fusivity tensor is symmetric (since symmetry is a property preserved under
transformation of axes, and KYB is clearly symmetric) and further that
Oxyz are its principal axes. Por Equation (I) to be valid at all points
of the medium it would also be necessary for the tensor to have Oxyz as
principal axes at all points of space. It therefore follows that Equation
(1) cannot be adopted as a possible general form of diffusion equation
because the axes Oxyz cannot he chosen arbitrarily but must be a preferred
set with the above properties. A special case would arise if the (symmetric)
diffusivitv tensor were isotropic at all points of the medium, i.e., if
Ki = K2 3 say k (a scalar function of position) so that

o k( 1 0
00 1

I-- th~s , 1t• mponentR would be the same for all rect•nvilar awpa
and all axes would be principal axes. Then from Equation (3), the flux
vector would be

F. - - k

and the corresponding diffusion equation

-0 6C C 6C c d ,- 6~C ') , K>)37L+ 11 87 + v 3-y -1 w -z - .- 'Ej)+6- y 5Z a

For this special isotropic form of diffusion equation there are no pre-
ferred axes.

Having recognized the above fundamercal limitations on the use of
Equation (I) we may seek for a meteorological situation where it might
appear plausible to postulate the existence of a preferred set of axes,
independent of spatial location. Such a situation could occur in the
surface layers of the atmosphere, where the mean wind vector can be
regarded approximately as everywhere parallel to a given vertical plane.
Tits uniquely defined vertical plane, together with the vertical direction
(which must he fundamental to the characteristics of turbulence generated
by the horizontal ground surface) will suffice to define a preferred set
of axes, e.g., Ox and Oz in the plane and, respectively, horizontal and
vertical- and Oy perpendicular to the plane, i.e., perpendicular to the
mean velocity vector, Relative to these axes the mean velocity component
v of Equation (1) is v 0 0. If it is postulated that this preferred set
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of axes is a principal set for a symmetric diffusivity tensor at every
point of the medium, then relative to this special set of axes the dif-
fusion equation would have the form

ac + u ýC + C " ý_ + iL

where Kl, K2, and K3 are scalar functions of position that define the
principal components of the diffusivity tensor. For the situation
visualized above, it is also normally assumed that the vertical compon-
ent of mean velocity w = 0. Of course, whether such a set of stringent
postulates does correspond to the real atmospheric diffusion process can
only be Justified on the basis of experiment.

It should be emphasized that the possible existence of a preferred
set of axes in the above example depends on the assumption that the mean
velocity vector is everywhere parallel to a given vertical plane, so that
a preferred set of horizontal axes can be defined (since we have already
assumed that the vertical direction is a preferred one). If this assump-
tion were not made, for example, if we were to assume8 only that the mean
velocity was parallel to the ground surface with general components
u ý 0, v ý 0, w = 0, then no preferred horizontal axes Ox, Oy could be

defined, and hence a diffusion equation of the form (X K2)

woul riot be valid, This form of equation could only be valid in the
special "a90 (l = X2, i.e., if the tensor quadric had rotational symmetry

about the z axis.

Finally, it should be noted that, although the above discussion has
been restricted to rectangular axes for reasons of simplicity, the ques-
tions raised will be quite fundamental when considering possible forms
for the equation of turbulent diffusion In other coordinate systems, e.g.,
any system of orthogonal curvilinear coordinates. For such cases it will
be necessary to apply the methods of general tensor analysis.
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